### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tetra- $\mu$ -acetato- $\kappa^4 O:O';\kappa^3 O,O':O';$ - $\kappa^3 O:O,O'$ -bis[(acetato- $\kappa^2 O,O'$ )(1,10-phenanthroline- $\kappa^2 N,N'$ )europium(III)]

#### Wen-Jing Liu, Zhao-Yang Li, Zhi-Qiang Wei and Shan-Tang Yue\*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: yuesht@scnu.edu.cn

Received 26 April 2010; accepted 28 April 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.008 Å; R factor = 0.030; wR factor = 0.062; data-to-parameter ratio = 14.1.

In the title centrosymmetric dinuclear  $Eu^{III}$  complex,  $[Eu_2(CH_3COO)_6(C_{12}H_8N_2)_2]$ , each  $Eu^{III}$  cation is coordinated by seven O atoms from five acetate anions and two N atoms from one phenanthroline ligand in a distorted tricapped trigonal-prismatic geometry. Four acetate anions bridge two  $Eu^{III}$  cations to form the dinuclear complex, with an  $Eu\cdots Eu$ distance of 3.9409 (8) Å. Weak intermolecular  $C-H\cdots O$ hydrogen bonding is present in the crystal structure.

#### **Related literature**

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu *et al.* (2006); Panagiotopoulos *et al.* (1995).



#### **Experimental**

#### Crystal data

 $\begin{array}{ll} [\mathrm{Eu}_2(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_6(\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2)_2] & \gamma = 98.300~(3)^\circ \\ M_r = 1018.61 & V = 905.1~(3)~\mathrm{\AA}^3 \\ \mathrm{Triclinic}, P\overline{1} & Z = 1 \\ a = 8.7671~(19)~\mathrm{\AA} & \mathrm{Mo}~\mathrm{Ka}~\mathrm{radiation} \\ b = 8.9265~(19)~\mathrm{\AA} & \mu = 3.50~\mathrm{mm}^{-1} \\ c = 12.992~(3)~\mathrm{\AA} & T = 298~\mathrm{K} \\ a \approx 103.631~(2)^\circ & 0.20~\times~0.19~\times~0.18~\mathrm{mm} \\ \beta = 109.254~(2)^\circ \end{array}$ 

#### Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)  $T_{min} = 0.541, T_{max} = 0.571$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$  $wR(F^2) = 0.062$ S = 1.053474 reflections

#### Table 1

| Hydrogen-bond | geometry | (A, | °) | ). |
|---------------|----------|-----|----|----|
|---------------|----------|-----|----|----|

| $D-\mathrm{H}\cdots A$                                                                                                         | D-H          | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|-------------------------|-----------------------------|
| $C2-H2\cdots O2^{i}$                                                                                                           | 0.93         | 2.57                    | 3.287 (6)               | 135                         |
| $\begin{array}{c} \text{C12-H8} \cdots \text{O6}^{\text{ii}} \\ \text{C16-H10} \\ C \cdots \text{O1}^{\text{iii}} \end{array}$ | 0.93<br>0.96 | 2.44<br>2.45            | 3.078 (6)<br>3.390 (6)  | 126<br>165                  |

5010 measured reflections 3474 independent reflections

 $R_{\rm int}=0.021$ 

247 parameters

 $\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-1}$ 

 $\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$ 

3062 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported financially by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009) and the NSFC (grant Nos. 20971047 and U0734005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2753).

#### References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, X.-L., Qiu, L., Sun, W.-B. & Chen, Z. (2006). Acta Cryst. E62, m3213– m3214.
- Panagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O., Terzis, A. & Raptopoulou, C. P. (1995). *Inorg. Chem.* 34, 4918–4923.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, m606 [doi:10.1107/S1600536810015680]

## Tetra- $\mu$ -acetato- $\kappa^4 O:O'; \kappa^3 O,O':O'; \kappa^3 O:O,O'$ -bis[(acetato- $\kappa^2 O,O'$ )(1,10-phenanthroline- $\kappa^2 N,N'$ )europium(III)]

W.-J. Liu, Z.-Y. Li, Z.-Q. Wei and S.-T. Yue

#### Comment

Dinuclear lanthanide complexes with 1,10-phenanthroline and acetate ligands had previously been reported (Panagiotopoulos *et al.*, 1995; Hu *et al.*, 2006). In this title complex, each Eu atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven oxygen atoms from acetate ions, to form a distorted tricapped trigonal prism, giving a dimeric structure with an inversion center (Fig.1). The result of the dinuclear centrosymmetric molecule with the Eu···Eu distance of 3.9409 (8) Å was that acetate ions exhibit three different coordination modes: common bidentate chelating mode, bidentate bridging mode and tridentate bridging mode. The Eu1—O bond distances vary from 2.359 (3) Å to 2.586 (3) Å and the Eu1—N bond length are 2.594 (3) Å and 2.649 (4) Å. The C—O distances of CH<sub>3</sub>COO<sup>-</sup> are within the range of 1.257 (5) Å to 1.273 (5) Å. This complex exhibits a three-dimensional structure via C—H···O hydrogen-bonds (Table 1).

#### **Experimental**

A stoichiometric amount of acetic acid and a quantitative amount of 1,10-phenanthroline (0.5 mmol) were mixed and then dissolved in 95% ethanol solution (20 ml). The pH value of the solution was adjusted to 6.5 by adding 1.0 M NaOH solution, and then added dropwise to the ethanol solution (20 ml) of  $Eu(NO_3)_3.6H_2O$  (0.5 mmol). The solution mixture was stirred continuously for 2 h at room temperature and then filtered. Single crystals were obtained by evaporation after one week.

#### Refinement

H atoms were positioned in calculated positions, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl and  $1.2U_{eq}(C)$  for the others.

#### Figures



Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound [symmetry code: (A) -x+1, -y+2, -z+1].

## Tetra-μ-acetato- $\kappa^4 O:O'; \kappa^3 O,O':O'; \kappa^3 O:O,O'-bis[(acetato-<math>\kappa^2 O,O')(1,10$ - phenanthroline- $\kappa^2 N,N'$ )europium(III)]

Crystal data [Eu<sub>2</sub>(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>6</sub>(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>] Z = 1

### supplementary materials

| $M_r = 1018.61$                  | F(000) = 500                                   |
|----------------------------------|------------------------------------------------|
| Triclinic, <i>P</i> T            | $D_{\rm x} = 1.869 {\rm Mg m}^{-3}$            |
| Hall symbol: -P 1                | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.7671 (19)  Å               | Cell parameters from 2079 reflections          |
| b = 8.9265 (19)  Å               | $\theta = 0.7 - 25.2^{\circ}$                  |
| c = 12.992 (3) Å                 | $\mu = 3.50 \text{ mm}^{-1}$                   |
| $\alpha = 103.631 \ (2)^{\circ}$ | T = 298  K                                     |
| $\beta = 109.254 \ (2)^{\circ}$  | Block, colorless                               |
| $\gamma = 98.300 \ (3)^{\circ}$  | $0.20\times0.19\times0.18\ mm$                 |
| V = 905.1 (3) Å <sup>3</sup>     |                                                |
|                                  |                                                |

#### Data collection

| Bruker SMART CCD<br>diffractometer                          | 3474 independent reflections                                              |
|-------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                    | 3062 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                    | $R_{\rm int} = 0.021$                                                     |
| ω scans                                                     | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2001) | $h = -10 \rightarrow 10$                                                  |
| $T_{\min} = 0.541, \ T_{\max} = 0.571$                      | $k = -8 \rightarrow 10$                                                   |
| 5010 measured reflections                                   | $l = -14 \rightarrow 15$                                                  |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                           |
|---------------------------------|------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | Hydrogen site location: inferred from neighbouring sites                                 |
| $wR(F^2) = 0.062$               | H-atom parameters constrained                                                            |
| <i>S</i> = 1.05                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.025P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 3474 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                          |
| 247 parameters                  | $\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$                                    |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$                               |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|-------------|---------------|---------------------------|
| Eu1  | 0.47430 (3) | 0.84412 (3) | 0.356229 (17) | 0.02341 (8)               |
| 03   | 0.5788 (4)  | 1.1409 (4)  | 0.4756 (2)    | 0.0312 (7)                |
| O4   | 0.6208 (4)  | 1.0735 (4)  | 0.3157 (2)    | 0.0336 (7)                |
| O2   | 0.2565 (4)  | 0.5955 (4)  | 0.2687 (3)    | 0.0419 (8)                |
| 01   | 0.5000 (4)  | 0.5829 (4)  | 0.3834 (3)    | 0.0373 (8)                |
| O5   | 0.7449 (4)  | 0.8969 (4)  | 0.4988 (2)    | 0.0310 (7)                |
| N1   | 0.6375 (4)  | 0.7194 (4)  | 0.2384 (3)    | 0.0277 (8)                |
| C1   | 0.7671 (6)  | 0.6658 (5)  | 0.2863 (4)    | 0.0362 (11)               |
| H1   | 0.7915      | 0.6637      | 0.3612        | 0.043*                    |
| C2   | 0.8702 (6)  | 0.6116 (6)  | 0.2307 (4)    | 0.0423 (12)               |
| H2   | 0.9609      | 0.5753      | 0.2678        | 0.051*                    |
| C3   | 0.8341 (6)  | 0.6134 (6)  | 0.1215 (4)    | 0.0450 (13)               |
| H3   | 0.9007      | 0.5782      | 0.0829        | 0.054*                    |
| C4   | 0.6972 (6)  | 0.6680 (6)  | 0.0664 (4)    | 0.0368 (11)               |
| C7   | 0.4176 (6)  | 0.7809 (6)  | -0.0387 (4)   | 0.0421 (13)               |
| C6   | 0.4559 (6)  | 0.7750 (5)  | 0.0747 (3)    | 0.0294 (10)               |
| N2   | 0.3612 (5)  | 0.8179 (4)  | 0.1353 (3)    | 0.0323 (9)                |
| C12  | 0.2280 (6)  | 0.8637 (6)  | 0.0849 (4)    | 0.0437 (13)               |
| H8   | 0.1601      | 0.8895      | 0.1249        | 0.052*                    |
| C11  | 0.1825 (7)  | 0.8757 (7)  | -0.0271 (4)   | 0.0565 (16)               |
| H7   | 0.0883      | 0.9110      | -0.0592       | 0.068*                    |
| C10  | 0.2789 (7)  | 0.8348 (7)  | -0.0871 (4)   | 0.0524 (15)               |
| H6   | 0.2516      | 0.8431      | -0.1607       | 0.063*                    |
| C5   | 0.6006 (6)  | 0.7203 (5)  | 0.1290 (4)    | 0.0299 (10)               |
| C15  | 0.6463 (5)  | 1.1743 (5)  | 0.4079 (4)    | 0.0284 (10)               |
| C13  | 0.3479 (6)  | 0.5207 (5)  | 0.3230 (4)    | 0.0327 (11)               |
| C8   | 0.5223 (7)  | 0.7281 (7)  | -0.0976 (4)   | 0.0534 (15)               |
| Н5   | 0.4986      | 0.7328      | -0.1718       | 0.064*                    |
| O6   | 0.7627 (4)  | 1.0478 (4)  | 0.6690 (2)    | 0.0336 (7)                |
| C14  | 0.2753 (7)  | 0.3534 (6)  | 0.3168 (5)    | 0.0506 (14)               |
| H9A  | 0.1575      | 0.3255      | 0.2737        | 0.076*                    |
| H9B  | 0.2959      | 0.3470      | 0.3927        | 0.076*                    |
| H9C  | 0.3264      | 0.2814      | 0.2800        | 0.076*                    |
| C16  | 0.7559 (6)  | 1.3374 (6)  | 0.4417 (4)    | 0.0422 (12)               |
| H10A | 0.8097      | 1.3412      | 0.3886        | 0.063*                    |
| H10B | 0.8385      | 1.3612      | 0.5172        | 0.063*                    |
| H10C | 0.6894      | 1.4140      | 0.4409        | 0.063*                    |
| C9   | 0.6513 (7)  | 0.6730 (7)  | -0.0494 (4)   | 0.0539 (15)               |
| H4   | 0.7136      | 0.6367      | -0.0914       | 0.065*                    |
| C18  | 0.9975 (5)  | 0.9554 (6)  | 0.6560 (4)    | 0.0395 (12)               |
| H11A | 1.0003      | 0.8457      | 0.6445        | 0.059*                    |
| H11B | 1.0414      | 1.0106      | 0.7365        | 0.059*                    |
| H11C | 1.0636      | 1.0025      | 0.6206        | 0.059*                    |
| C17  | 0.8220 (5)  | 0.9669 (5)  | 0.6038 (4)    | 0.0277 (10)               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|--------------|--------------|-----------------|-------------|-------------|-------------|
| Eu1 | 0.02392 (12) | 0.02795 (13) | 0.02150 (12)    | 0.00926 (9) | 0.01093 (9) | 0.00800 (9) |
| O3  | 0.0368 (18)  | 0.0376 (18)  | 0.0297 (16)     | 0.0146 (15) | 0.0192 (14) | 0.0159 (15) |
| O4  | 0.0410 (19)  | 0.0386 (19)  | 0.0242 (16)     | 0.0079 (15) | 0.0181 (14) | 0.0077 (15) |
| O2  | 0.039 (2)    | 0.038 (2)    | 0.045 (2)       | 0.0085 (16) | 0.0110 (16) | 0.0142 (17) |
| 01  | 0.038 (2)    | 0.0360 (19)  | 0.0442 (19)     | 0.0151 (15) | 0.0170 (16) | 0.0167 (16) |
| O5  | 0.0288 (17)  | 0.0393 (19)  | 0.0243 (16)     | 0.0108 (14) | 0.0111 (13) | 0.0056 (14) |
| N1  | 0.030 (2)    | 0.028 (2)    | 0.0260 (19)     | 0.0091 (16) | 0.0132 (16) | 0.0064 (16) |
| C1  | 0.044 (3)    | 0.038 (3)    | 0.032 (3)       | 0.017 (2)   | 0.019 (2)   | 0.011 (2)   |
| C2  | 0.034 (3)    | 0.047 (3)    | 0.050 (3)       | 0.018 (2)   | 0.018 (2)   | 0.013 (3)   |
| C3  | 0.046 (3)    | 0.047 (3)    | 0.048 (3)       | 0.016 (3)   | 0.031 (3)   | 0.004 (3)   |
| C4  | 0.043 (3)    | 0.037 (3)    | 0.032 (3)       | 0.011 (2)   | 0.021 (2)   | 0.003 (2)   |
| C7  | 0.050 (3)    | 0.048 (3)    | 0.025 (2)       | 0.007 (3)   | 0.014 (2)   | 0.010 (2)   |
| C6  | 0.036 (3)    | 0.027 (2)    | 0.022 (2)       | 0.004 (2)   | 0.011 (2)   | 0.0032 (19) |
| N2  | 0.034 (2)    | 0.035 (2)    | 0.027 (2)       | 0.0104 (18) | 0.0096 (17) | 0.0088 (18) |
| C12 | 0.039 (3)    | 0.061 (4)    | 0.031 (3)       | 0.024 (3)   | 0.011 (2)   | 0.012 (3)   |
| C11 | 0.064 (4)    | 0.074 (4)    | 0.033 (3)       | 0.033 (3)   | 0.009 (3)   | 0.021 (3)   |
| C10 | 0.069 (4)    | 0.060 (4)    | 0.027 (3)       | 0.018 (3)   | 0.013 (3)   | 0.016 (3)   |
| C5  | 0.037 (3)    | 0.025 (2)    | 0.028 (2)       | 0.005 (2)   | 0.015 (2)   | 0.005 (2)   |
| C15 | 0.027 (2)    | 0.034 (3)    | 0.031 (2)       | 0.012 (2)   | 0.014 (2)   | 0.015 (2)   |
| C13 | 0.043 (3)    | 0.033 (3)    | 0.029 (2)       | 0.012 (2)   | 0.024 (2)   | 0.006 (2)   |
| C8  | 0.067 (4)    | 0.071 (4)    | 0.029 (3)       | 0.018 (3)   | 0.027 (3)   | 0.015 (3)   |
| O6  | 0.0333 (18)  | 0.0416 (19)  | 0.0257 (16)     | 0.0171 (15) | 0.0109 (14) | 0.0052 (15) |
| C14 | 0.064 (4)    | 0.033 (3)    | 0.057 (3)       | 0.004 (3)   | 0.027 (3)   | 0.016 (3)   |
| C16 | 0.049 (3)    | 0.036 (3)    | 0.046 (3)       | 0.007 (2)   | 0.027 (3)   | 0.009 (2)   |
| C9  | 0.063 (4)    | 0.066 (4)    | 0.037 (3)       | 0.017 (3)   | 0.030 (3)   | 0.008 (3)   |
| C18 | 0.030 (3)    | 0.044 (3)    | 0.041 (3)       | 0.013 (2)   | 0.009 (2)   | 0.009 (2)   |
| C17 | 0.027 (2)    | 0.028 (2)    | 0.034 (3)       | 0.0086 (19) | 0.014 (2)   | 0.014 (2)   |

#### Geometric parameters (Å, °)

| Eu1—O3 <sup>i</sup>  | 2.358 (3)  | C7—C10  | 1.384 (7) |
|----------------------|------------|---------|-----------|
| Eu1—O6 <sup>i</sup>  | 2.374 (3)  | С7—С6   | 1.415 (6) |
| Eu1—O5               | 2.377 (3)  | С7—С8   | 1.438 (7) |
| Eu1—O2               | 2.453 (3)  | C6—N2   | 1.355 (5) |
| Eu1—O1               | 2.470 (3)  | C6—C5   | 1.448 (6) |
| Eu1—O4               | 2.513 (3)  | N2—C12  | 1.311 (6) |
| Eu1—O3               | 2.586 (3)  | C12—C11 | 1.411 (7) |
| Eu1—N1               | 2.594 (3)  | С12—Н8  | 0.9300    |
| Eu1—N2               | 2.649 (4)  | C11—C10 | 1.358 (7) |
| Eu1—C13              | 2.815 (5)  | С11—Н7  | 0.9300    |
| Eu1—C15              | 2.920 (4)  | С10—Н6  | 0.9300    |
| Eu1—Eu1 <sup>i</sup> | 3.9409 (8) | C15—C16 | 1.500 (6) |
| O3—C15               | 1.276 (5)  | C13—C14 | 1.508 (6) |
| O3—Eu1 <sup>i</sup>  | 2.358 (3)  | С8—С9   | 1.324 (8) |

| O4—C15                               | 1.245 (5)   | C8—H5               | 0.9300    |
|--------------------------------------|-------------|---------------------|-----------|
| O2—C13                               | 1.262 (6)   | O6—C17              | 1.273 (5) |
| O1—C13                               | 1.262 (5)   | O6—Eu1 <sup>i</sup> | 2.374 (3) |
| O5—C17                               | 1.256 (5)   | С14—Н9А             | 0.9600    |
| N1—C1                                | 1.319 (6)   | С14—Н9В             | 0.9600    |
| N1—C5                                | 1.351 (5)   | С14—Н9С             | 0.9600    |
| C1—C2                                | 1.402 (6)   | C16—H10A            | 0.9600    |
| C1—H1                                | 0.9300      | C16—H10B            | 0.9600    |
| C2—C3                                | 1.352 (7)   | C16—H10C            | 0.9600    |
| С2—Н2                                | 0.9300      | С9—Н4               | 0.9300    |
| C3—C4                                | 1.399 (7)   | C18—C17             | 1.492 (6) |
| C3—H3                                | 0.9300      | C18—H11A            | 0.9600    |
| C4—C5                                | 1.410 (6)   | CI8—HIIB            | 0.9600    |
| C4—C9                                | 1.437 (7)   | CI8—HIIC            | 0.9600    |
| O3 <sup>i</sup> —Eu1—O6 <sup>i</sup> | 75.03 (10)  | C5—N1—Eu1           | 120.7 (3) |
| O3 <sup>1</sup> —Eu1—O5              | 76.96 (10)  | N1—C1—C2            | 123.7 (4) |
| O6 <sup>i</sup> —Eu1—O5              | 137.07 (10) | N1—C1—H1            | 118.2     |
| O3 <sup>i</sup> —Eu1—O2              | 86.29 (10)  | C2—C1—H1            | 118.2     |
| O6 <sup>i</sup> —Eu1—O2              | 81.08 (11)  | C3—C2—C1            | 118.2 (5) |
| O5—Eu1—O2                            | 128.67 (11) | С3—С2—Н2            | 120.9     |
| O3 <sup>i</sup> —Eu1—O1              | 77.36 (10)  | C1—C2—H2            | 120.9     |
| O6 <sup>i</sup> —Eu1—O1              | 127.36 (11) | C2—C3—C4            | 120.5 (4) |
| O5—Eu1—O1                            | 75.84 (10)  | С2—С3—Н3            | 119.8     |
| O2—Eu1—O1                            | 53.10 (11)  | С4—С3—Н3            | 119.8     |
| O3 <sup>i</sup> —Eu1—O4              | 125.07 (10) | C3—C4—C5            | 117.4 (4) |
| O6 <sup>i</sup> —Eu1—O4              | 90.28 (11)  | C3—C4—C9            | 123.4 (5) |
| O5—Eu1—O4                            | 79.96 (10)  | C5—C4—C9            | 119.2 (5) |
| O2—Eu1—O4                            | 144.17 (10) | C10—C7—C6           | 117.6 (5) |
| O1—Eu1—O4                            | 141.79 (10) | C10—C7—C8           | 123.9 (5) |
| O3 <sup>i</sup> —Eu1—O3              | 74.40 (11)  | C6—C7—C8            | 118.5 (5) |
| O6 <sup>i</sup> —Eu1—O3              | 72.72 (10)  | N2—C6—C7            | 122.5 (4) |
| O5—Eu1—O3                            | 68.79 (10)  | N2—C6—C5            | 118.0 (4) |
| O2—Eu1—O3                            | 150.59 (10) | C7—C6—C5            | 119.5 (4) |
| O1—Eu1—O3                            | 138.62 (10) | C12—N2—C6           | 117.9 (4) |
| O4—Eu1—O3                            | 50.80 (9)   | C12—N2—Eu1          | 122.8 (3) |
| O3 <sup>i</sup> —Eu1—N1              | 143.33 (11) | C6—N2—Eu1           | 118.7 (3) |
| O6 <sup>i</sup> —Eu1—N1              | 139.90 (10) | N2                  | 123.2 (5) |
| O5—Eu1—N1                            | 77.84 (10)  | N2—C12—H8           | 118.4     |
| O2—Eu1—N1                            | 89.07 (11)  | С11—С12—Н8          | 118.4     |
| O1—Eu1—N1                            | 70.92 (11)  | C10-C11-C12         | 118.8 (5) |
| O4—Eu1—N1                            | 75.40 (10)  | C10—C11—H7          | 120.6     |
| O3—Eu1—N1                            | 119.64 (10) | С12—С11—Н7          | 120.6     |
| O3 <sup>1</sup> —Eu1—N2              | 149.00 (11) | C11—C10—C7          | 120.0 (5) |
| O6 <sup>1</sup> —Eu1—N2              | 77.11 (11)  | С11—С10—Н6          | 120.0     |
| O5—Eu1—N2                            | 133.80 (10) | С7—С10—Н6           | 120.0     |

## supplementary materials

| O2—Eu1—N2                                | 76.19 (11)  | N1—C5—C4                | 122.1 (4) |
|------------------------------------------|-------------|-------------------------|-----------|
| O1—Eu1—N2                                | 110.07 (11) | N1—C5—C6                | 118.6 (4) |
| O4—Eu1—N2                                | 67.99 (10)  | C4—C5—C6                | 119.3 (4) |
| O3—Eu1—N2                                | 109.76 (10) | O4—C15—O3               | 120.4 (4) |
| N1—Eu1—N2                                | 62.79 (11)  | O4—C15—C16              | 121.0 (4) |
| O3 <sup>i</sup> —Eu1—C13                 | 79.18 (11)  | O3—C15—C16              | 118.5 (4) |
| O6 <sup>i</sup> —Eu1—C13                 | 103.79 (13) | O4—C15—Eu1              | 58.8 (2)  |
| O5—Eu1—C13                               | 102.11 (13) | O3—C15—Eu1              | 62.3 (2)  |
| O2—Eu1—C13                               | 26.59 (12)  | C16—C15—Eu1             | 172.3 (3) |
| O1—Eu1—C13                               | 26.61 (12)  | O2—C13—O1               | 121.4 (4) |
| O4—Eu1—C13                               | 154.90 (11) | O2—C13—C14              | 119.9 (4) |
| O3—Eu1—C13                               | 153.35 (11) | O1—C13—C14              | 118.8 (5) |
| N1—Eu1—C13                               | 80.57 (12)  | O2—C13—Eu1              | 60.5 (2)  |
| N2—Eu1—C13                               | 94.65 (12)  | O1—C13—Eu1              | 61.3 (2)  |
| O3 <sup>i</sup> —Eu1—C15                 | 99.99 (11)  | C14—C13—Eu1             | 173.6 (3) |
| O6 <sup>i</sup> —Eu1—C15                 | 82.87 (11)  | C9—C8—C7                | 122.1 (5) |
| O5—Eu1—C15                               | 70.72 (11)  | С9—С8—Н5                | 119.0     |
| O2—Eu1—C15                               | 160.62 (12) | С7—С8—Н5                | 119.0     |
| O1—Eu1—C15                               | 146.09 (11) | C17—O6—Eu1 <sup>i</sup> | 136.1 (3) |
| O4—Eu1—C15                               | 25.08 (10)  | С13—С14—Н9А             | 109.5     |
| O3—Eu1—C15                               | 25.89 (10)  | С13—С14—Н9В             | 109.5     |
| N1—Eu1—C15                               | 96.31 (11)  | H9A—C14—H9B             | 109.5     |
| N2—Eu1—C15                               | 89.71 (11)  | С13—С14—Н9С             | 109.5     |
| C13—Eu1—C15                              | 172.71 (13) | Н9А—С14—Н9С             | 109.5     |
| O3 <sup>i</sup> —Eu1—Eu1 <sup>i</sup>    | 39.20 (7)   | H9B—C14—H9C             | 109.5     |
| O6 <sup>i</sup> —Eu1—Eu1 <sup>i</sup>    | 69.54 (7)   | C15—C16—H10A            | 109.5     |
| O5—Eu1—Eu1 <sup>i</sup>                  | 68.14 (7)   | C15—C16—H10B            | 109.5     |
| O2—Eu1—Eu1 <sup>i</sup>                  | 122.20 (8)  | H10A—C16—H10B           | 109.5     |
| O1—Eu1—Eu1 <sup>i</sup>                  | 111.19 (7)  | C15—C16—H10C            | 109.5     |
| O4—Eu1—Eu1 <sup>i</sup>                  | 85.93 (7)   | H10A—C16—H10C           | 109.5     |
| O3—Eu1—Eu1 <sup>i</sup>                  | 35.19 (6)   | H10B—C16—H10C           | 109.5     |
| N1—Eu1—Eu1 <sup>i</sup>                  | 143.56 (8)  | C8—C9—C4                | 121.4 (5) |
| N2—Eu1—Eu1 <sup>i</sup>                  | 137.30 (8)  | C8—C9—H4                | 119.3     |
| C13—Eu1—Eu1 <sup>i</sup>                 | 118.30 (9)  | C4—C9—H4                | 119.3     |
| C15—Eu1—Eu1 <sup>i</sup>                 | 60.89 (9)   | C17—C18—H11A            | 109.5     |
| C15—O3—Eu1 <sup>i</sup>                  | 160.5 (3)   | C17—C18—H11B            | 109.5     |
| C15—O3—Eu1                               | 91.8 (3)    | H11A—C18—H11B           | 109.5     |
| Eu1 <sup>i</sup> —O3—Eu1                 | 105.60 (10) | C17—C18—H11C            | 109.5     |
| C15—O4—Eu1                               | 96.1 (2)    | H11A—C18—H11C           | 109.5     |
| C13—O2—Eu1                               | 92.9 (3)    | H11B—C18—H11C           | 109.5     |
| C13—O1—Eu1                               | 92.1 (3)    | O5—C17—O6               | 125.1 (4) |
| C17—O5—Eu1                               | 139.2 (3)   | O5—C17—C18              | 117.4 (4) |
| C1—N1—C5                                 | 118.2 (4)   | O6—C17—C18              | 117.5 (4) |
| C1—N1—Eu1                                | 120.9 (3)   |                         |           |
| Symmetry codes: (i) $-x+1, -y+2, -z+1$ . |             |                         |           |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                           | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |  |
|---------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------------------------------|--|
| C2—H2···O2 <sup>ii</sup>                                                                          | 0.93        | 2.57         | 3.287 (6)    | 135                                |  |
| C12—H8…O6 <sup>i</sup>                                                                            | 0.93        | 2.44         | 3.078 (6)    | 126                                |  |
| C16—H10C…O1 <sup>iii</sup>                                                                        | 0.96        | 2.45         | 3.390 (6)    | 165                                |  |
| Symmetry codes: (ii) $x+1$ , $y$ , $z$ ; (i) $-x+1$ , $-y+2$ , $-z+1$ ; (iii) $x$ , $y+1$ , $z$ . |             |              |              |                                    |  |



